Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mSystems ; 8(1): e0125422, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36719224

RESUMO

Microbial communities can be structured by both deterministic and stochastic processes, but the relative importance of these processes remains unknown. The ambiguity partly arises from an inability to disentangle soil microbial processes from confounding factors, such as aboveground plant communities or anthropogenic disturbance. In this study, we characterized the relative contributions of determinism and stochasticity to assembly processes of soil bacterial communities across a large environmental gradient of undisturbed Antarctic soils. We hypothesized that harsh soils would impose a strong environmental selection on microbial communities, whereas communities in benign soils would be structured largely by dispersal. Contrary to our expectations, dispersal was the dominant assembly mechanism across the entire soil environmental gradient, including benign environments. The microbial community composition reflects slowly changing soil conditions and dispersal limitation of isolated sites. Thus, stochastic processes, as opposed to deterministic, are primary drivers of soil ecosystem assembly across space at our study site. This is especially surprising given the strong environmental constraints on soil microorganisms in one of the harshest environments on the planet, suggesting that dispersal could be a driving force in microbial community assembly in soils worldwide. IMPORTANCE Because of their diversity and ubiquity, microbes provide an excellent means to tease apart how natural communities are structured. In general, ecologists believe that stochastic assembly processes, like random drift and dispersal, should dominate in benign environments while deterministic processes, like environmental filtering, should be prevalent in harsh environments. To help resolve this debate, we analyzed microbial community composition in pristine Antarctic soils devoid of human influence or plant communities for eons. Our results demonstrate that dispersal limitation is a surprisingly potent force of community limitation throughout all soil conditions. Thus, dispersal appears to be a driving force of microbial community assembly, even in the harshest of conditions.


Assuntos
Biodiversidade , Microbiota , Humanos , Regiões Antárticas , Camada de Gelo , Solo , Plantas
2.
Andrologia ; 54(10): e14561, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35995581

RESUMO

Sexual delinquency is a global problem where those with paraphilic disorders, such as paedophiles, are more likely to commit and reoffend. Androgen deprivation therapy (ADT) has been suggested as a solution. The objective of this narrative review is to present current information on its risks, benefits and limitations as a treatment for paraphilias. The importance of testosterone in sexual function, the effect of its deficiency by age or by pharmacological treatment (anti-androgens, GnRH agonists and GnRH antagonists) and the effect of testosterone replacement therapy will be reviewed. The relationship between androgens, brain, sexual behaviour and pathophysiology of paraphilic disorders will also be explored. ADT reduces sexual urges, but has adverse effects and, because its reversible nature, it does not ensure less recidivism. Likewise, the research quality of ADT drugs is limited and not enough to support their use. Child sex offenders, and not paraphilic subjects who have not committed assaults, show signs of elevated prenatal exposure to androgens and a higher methylation state of the androgen receptor gene. Sexual behaviour is regulated by subcortical (hypothalamus, brainstem and spinal cord) and cortical structures of the brain, in addition to brain circuits (dopaminergic, serotonergic). Those with paraphilic disorders show abnormalities at these levels that could relate to the risk of sexual offences. In conclusion, androgens represent a significant part of the pathophysiology of paraphilias and therefore, ADT seems promising. Nonetheless, more studies are needed to make definite conclusions about the efficacy of long-term ADT in paraphilic patients.


Assuntos
Transtornos Parafílicos , Neoplasias da Próstata , Antagonistas de Androgênios/efeitos adversos , Androgênios/uso terapêutico , Encéfalo , Criança , Hormônio Liberador de Gonadotropina , Humanos , Masculino , Transtornos Parafílicos/tratamento farmacológico , Neoplasias da Próstata/tratamento farmacológico , Receptores Androgênicos/fisiologia , Testosterona/uso terapêutico
3.
mSystems ; 7(1): e0133021, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35040702

RESUMO

The inland soils found on the Antarctic continent represent one of the more challenging environments for microbial life on Earth. Nevertheless, Antarctic soils harbor unique bacterial and archaeal (prokaryotic) communities able to cope with extremely cold and dry conditions. These communities are not homogeneous, and the taxonomic composition and functional capabilities (genomic attributes) of these communities across environmental gradients remain largely undetermined. We analyzed the prokaryotic communities in soil samples collected from across the Shackleton Glacier region of Antarctica by coupling quantitative PCR, marker gene amplicon sequencing, and shotgun metagenomic sequencing. We found that elevation was the dominant factor explaining differences in the structures of the soil prokaryotic communities, with the drier and saltier soils found at higher elevations harboring less diverse communities and unique assemblages of cooccurring taxa. The higher-elevation soil communities also had lower maximum potential growth rates (as inferred from metagenome-based estimates of codon usage bias) and an overrepresentation of genes associated with trace gas metabolism. Together, these results highlight the utility of assessing community shifts across pronounced environmental gradients to improve our understanding of the microbial diversity found in Antarctic soils and the strategies used by soil microbes to persist at the limits of habitability. IMPORTANCE Antarctic soils represent an ideal system to study how environmental properties shape the taxonomic and functional diversity of microbial communities given the relatively low diversity of Antarctic soil microbial communities and the pronounced environmental gradients that occur across soils located in reasonable proximity to one another. Moreover, the challenging environmental conditions typical of most Antarctic soils present an opportunity to investigate the traits that allow soil microbes to persist in some of the most inhospitable habitats on Earth. We used cultivation-independent methods to study the bacterial and archaeal communities found in soil samples collected from across the Shackleton Glacier region of the Transantarctic Mountains. We show that those environmental characteristics associated with elevation have the greatest impact on the structure of these microbial communities, with the colder, drier, and saltier soils found at higher elevations sustaining less diverse communities that were distinct from those in more hospitable soils with respect to their composition, genomic attributes, and overall life-history strategies. Notably, the harsher conditions found in higher-elevation soils likely select for taxa with lower maximum potential growth rates and an increased reliance on trace gas metabolism to support growth.


Assuntos
Microbiota , Solo , Solo/química , Regiões Antárticas , Microbiologia do Solo , Bactérias , Archaea , Metagenômica/métodos
4.
Glob Chang Biol ; 28(2): 644-653, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34657350

RESUMO

Understanding how terrestrial biotic communities have responded to glacial recession since the Last Glacial Maximum (LGM) can inform present and future responses of biota to climate change. In Antarctica, the Transantarctic Mountains (TAM) have experienced massive environmental changes associated with glacial retreat since the LGM, yet we have few clues as to how its soil invertebrate-dominated animal communities have responded. Here, we surveyed soil invertebrate fauna from above and below proposed LGM elevations along transects located at 12 features across the Shackleton Glacier region. Our transects captured gradients of surface ages possibly up to 4.5 million years and the soils have been free from human disturbance for their entire history. Our data support the hypothesis that soils exposed during the LGM are now less suitable habitats for invertebrates than those that have been exposed by deglaciation following the LGM. Our results show that faunal abundance, community composition, and diversity were all strongly affected by climate-driven changes since the LGM. Soils more recently exposed by the glacial recession (as indicated by distances from present ice surfaces) had higher faunal abundances and species richness than older exposed soils. Higher abundances of the dominant nematode Scottnema were found in older exposed soils, while Eudorylaimus, Plectus, tardigrades, and rotifers preferentially occurred in more recently exposed soils. Approximately 30% of the soils from which invertebrates could be extracted had only Scottnema, and these single-taxon communities occurred more frequently in soils exposed for longer periods of time. Our structural equation modeling of abiotic drivers highlighted soil salinity as a key mediator of Scottnema responses to soil exposure age. These changes in soil habitat suitability and biotic communities since the LGM indicate that Antarctic terrestrial biodiversity throughout the TAM will be highly altered by climate warming.


Assuntos
Ecossistema , Solo , Idoso , Animais , Regiões Antárticas , Biodiversidade , Humanos , Invertebrados
5.
Sci Rep ; 11(1): 11129, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34045505

RESUMO

Diabetes is a metabolic syndrome rooted in impaired insulin and/or glucagon secretory responses within the pancreatic islets of Langerhans (islets). Insulin secretion is primarily regulated by two key factors: glucose-mediated ATP production and G-protein coupled receptors (GPCRs) signaling. GPCR kinase 2 (GRK2), a key regulator of GPCRs, is reported to be downregulated in the pancreas of spontaneously obesogenic and diabetogenic mice (ob/ob). Moreover, recent studies have shown that GRK2 non-canonically localizes to the cardiac mitochondrion, where it can contribute to glucose metabolism. Thus, islet GRK2 may impact insulin secretion through either mechanism. Utilizing Min6 cells, a pancreatic ß-cell model, we knocked down GRK2 and measured glucose-mediated intracellular calcium responses and insulin secretion. Silencing of GRK2 attenuated calcium responses, which were rescued by pertussis toxin pre-treatment, suggesting a Gαi/o-dependent mechanism. Pancreatic deletion of GRK2 in mice resulted in glucose intolerance with diminished insulin secretion. These differences were due to diminished insulin release rather than decreased insulin content or gross differences in islet architecture. Furthermore, a high fat diet feeding regimen exacerbated the metabolic phenotype in this model. These results suggest a new role for pancreatic islet GRK2 in glucose-mediated insulin responses that is relevant to type 2 diabetes disease progression.


Assuntos
Cálcio/metabolismo , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Intolerância à Glucose/metabolismo , Glucose/metabolismo , Secreção de Insulina/fisiologia , Células Secretoras de Insulina/metabolismo , Animais , Linhagem Celular , AMP Cíclico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica , Regulação para Baixo , Quinase 2 de Receptor Acoplado a Proteína G/genética , Glucagon/metabolismo , Intolerância à Glucose/genética , Teste de Tolerância a Glucose , Ilhotas Pancreáticas/metabolismo , Peroxidação de Lipídeos/fisiologia , Camundongos , Camundongos Knockout , Obesidade/genética , Obesidade/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...